1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Abe Schultz edited this page 2025-02-27 10:28:51 +00:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing feature is its reinforcement learning (RL) action, which was used to improve the model's responses beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt more effectively to user feedback and objectives, ultimately improving both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's equipped to break down intricate queries and reason through them in a detailed manner. This directed thinking procedure permits the model to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to create structured actions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation design that can be integrated into different workflows such as representatives, sensible thinking and information analysis jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, enabling efficient reasoning by routing inquiries to the most appropriate professional "clusters." This technique permits the model to concentrate on different problem domains while maintaining total efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective designs to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful material, and assess designs against crucial security requirements. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation boost, create a limitation increase demand and reach out to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent harmful material, and designs against key safety criteria. You can carry out safety procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.

The model detail page offers vital details about the design's abilities, pricing structure, and application standards. You can find detailed use guidelines, consisting of sample API calls and code snippets for integration. The model supports different text generation jobs, including material production, code generation, and question answering, utilizing its support finding out optimization and CoT reasoning capabilities. The page also consists of deployment choices and licensing details to assist you get started with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be prompted to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a variety of instances (between 1-100). 6. For Instance type, choose your instance type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure advanced security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the deployment is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and adjust model specifications like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, content for reasoning.

This is an excellent way to explore the model's thinking and text generation abilities before incorporating it into your applications. The playground offers instant feedback, helping you comprehend how the design reacts to numerous inputs and letting you fine-tune your triggers for optimum results.

You can quickly test the model in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up reasoning specifications, and sends a request to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two hassle-free methods: utilizing the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to help you select the technique that finest matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser displays available models, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card shows key details, consisting of:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The model name and service provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the design, it's suggested to review the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the immediately produced name or create a customized one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting proper instance types and counts is crucial for cost and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the design.

    The implementation procedure can take numerous minutes to finish.

    When implementation is complete, your endpoint status will change to InService. At this moment, the design is ready to accept inference requests through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is complete, you can conjure up the model utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, forum.pinoo.com.tr total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases.
  5. In the Managed implementations area, locate the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the correct implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build ingenious solutions using AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference performance of large language designs. In his spare time, Vivek takes pleasure in treking, watching movies, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing options that assist consumers accelerate their AI journey and unlock service value.