1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
maryellenbrook edited this page 2025-03-01 10:16:08 +00:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to boost thinking abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential differentiating function is its support learning (RL) action, which was utilized to improve the model's reactions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and goals, ultimately boosting both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's equipped to break down complicated questions and reason through them in a detailed manner. This directed reasoning procedure enables the design to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation model that can be integrated into various workflows such as representatives, rational thinking and data interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion specifications, making it possible for effective inference by routing queries to the most pertinent specialist "clusters." This approach enables the model to concentrate on different issue domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to imitate the habits and thinking patterns of the larger DeepSeek-R1 model, using it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging material, and evaluate models against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit boost, produce a limit increase request and reach out to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid harmful content, and examine designs against key security criteria. You can execute security measures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 design.

The model detail page offers necessary details about the design's abilities, rates structure, and application guidelines. You can find detailed usage guidelines, consisting of sample API calls and code bits for integration. The model supports various text generation jobs, including content development, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning capabilities. The page also consists of release options and licensing details to assist you get started with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, enter a number of circumstances (in between 1-100). 6. For example type, choose your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service function consents, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you may wish to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the implementation is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive user interface where you can experiment with various prompts and change design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For instance, material for reasoning.

This is an outstanding way to explore the model's reasoning and text generation abilities before integrating it into your applications. The playground provides instant feedback, assisting you comprehend how the design reacts to various inputs and letting you fine-tune your prompts for optimum outcomes.

You can rapidly check the model in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up reasoning criteria, and sends out a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 hassle-free methods: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the approach that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model web browser shows available designs, with details like the supplier name and model capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card shows crucial details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this design can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The model name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you release the design, it's advised to evaluate the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the immediately generated name or create a customized one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the variety of instances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The implementation procedure can take a number of minutes to finish.

    When deployment is complete, your endpoint status will change to InService. At this point, the design is prepared to accept inference demands through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, it-viking.ch you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases.
  5. In the Managed releases area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate implementation: 1. Endpoint name.
  8. Model name.
  9. status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative services utilizing AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the inference efficiency of big language models. In his totally free time, Vivek enjoys treking, seeing motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing solutions that help clients accelerate their AI journey and unlock business worth.